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Abstract. We review the production of scalar Higgs-like particles in high-energy electron–electron colli-
sions, via the fusion of electroweak gauge bosons. The emphasis is on how to distinguish a CP -even from a
CP -odd Higgs particle. Among the more significant differences, we find that in the CP -odd case, the Higgs
spectrum is much harder, and the dependence of the total cross section on the product of the polarizations
of the two beams much stronger, than in the CP -even case. We also briefly discuss parity violation, and
the production of charged Higgs bosons.

1 Introduction

In planning for a future linear collider [1,2] one has to
explore not only the electron–positron mode and various
photon modes, but also an electron–electron mode, in spite
of concerns related to beam “disruption”. One reason that
an electron–electron collider is interesting is that one may
produce states not accessible in the annihilation channel;
another is that a large electron polarization will be readily
available. There is already a considerable literature on the
electron–electron mode [3–6].

We consider here the production of Higgs particles1
in electron–electron collisions. Apart from a precise de-
termination of the Higgs mass, which will allow for cer-
tain consistency tests of the theory, one would want to
determine its properties under the discrete symmetries,
and its couplings to various other particles. At high ener-
gies, the Higgs production at an electron–electron collider
will proceed via gauge boson fusion [3,6], and thus not be
suppressed by the s-channel annihilation mechanism [7].
Certain models also predict doubly-charged Higgs parti-
cles [8], some of which can be produced more readily at
an electron–electron collider.

Scalar (“Higgs”) particles, h, h− and h−−, are pro-
duced in the t-channel via Z- or W -exchange:

e−(p1) + e−(p2) → e−(p′
1) + e−(p′

2) + h(ph), (1.1)
e−(p1) + e−(p2) → e−(p′

1) + νe(p′
2) + h−(ph), (1.2)

e−(p1) + e−(p2) → νe(p′
1) + νe(p′

2) + h−−(ph), (1.3)

as depicted in Fig. 1 for the case (1.1). (However, in some
models, including the left–right symmetric model [9], the
doubly-charged Higgs boson has practically no coupling to

1 The term “Higgs particle” will here be used quite generally
about any scalar, electrically neutral or charged, that has a
significant coupling to electroweak gauge bosons.
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Fig. 1. Feynman diagram for the class of processes considered.
(There is also a crossed diagram.)

the ordinary, left-handed W bosons. They would not be
produced by this mechanism.) It is well known that the
CP property of the Higgs particle can be explored in the
electron–positron annihilation mode from studies of angu-
lar and energy correlations [10–12]. In the present paper,
we analyze the corresponding situation for the t-channel,
at an electron–electron collider, taking into account the
effects of beam polarization. We shall investigate to what
extent various angular distributions and energy correla-
tions are sensitive to whether the Higgs particle is even or
odd under CP , in which case it will be denoted as H or
A, respectively. It turns out that several of these distribu-
tions are quite sensitive to the CP property of the Higgs
particle. Some of these results were presented elsewhere
[13]. The ZZh coupling is taken to be [14]

i25/4
√
GF

{
m2

Z g
µν for h = H (CP even),

η εµνρσk1ρk2σ for h = A (CP odd),
(1.4)

where k1 and k2 are the momenta of the gauge bosons.
Thus, we see immediately that near the forward direc-
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tion, where kkk1 and kkk2 are antiparallel, the production of
a CP -odd Higgs boson will be suppressed. In the MSSM,
this ZZA coupling is absent at the tree level, but will be
induced at the 1-loop level [15], with a strength η = O(α)
multiplied by a complicated function of the masses in-
volved. Our analysis is not restricted to any particular
model.

There could also be CP violation in the Higgs sector, in
which case the Higgs bosons would not be CP eigenstates
[16]. Such mixing could take place at the tree level [17],
or it could be induced by radiative corrections. It has also
been pointed out that such mixing might take place in
the MSSM, and be resonant [18]. We shall discuss ways to
look for CP violation in the effective ZZh coupling.

The focus will be on a light Higgs boson, as is fa-
vored by current LEP precision data [19], and the case
of Ec.m. = 500 GeV [2]. When one or both Zs are re-
placed by W s (for the production of charged Higgs par-
ticles), we shall assume that the Lorentz structure of the
coupling remains unchanged. The paper is organized as
follows. In Sect. 2 we give notations and discuss kinemat-
ics. In Sect. 3 we give various cross section formulas. In
Sects. 4–6 we present a variety of numerical results. Sec-
tion 4 is devoted to integrated cross sections and distribu-
tions where the final-state electrons are integrated over.
These distributions would qualitatively be the same for
the production of charged Higgs particles. In Sect. 5 we
study correlations between the final-state electrons, and
in Sect. 6 we consider parity violation. Sect. 7 is devoted
to a brief qualitative discussion of charged Higgs particles.
In Sect. 8 we discuss statistics, and in Sect. 9. give some
concluding remarks.

2 Notation and kinematics

The eeZ vector and axial vector couplings are denoted
gV and gA, as defined by the interaction ψ(x)γµ(gV −
gAγ5)ψ(x)Zµ(x). As a parameterization of their ratio, we
define the angle χ by

gV ≡ g̃ cosχ, gA ≡ g̃ sinχ, (2.1)

with

g̃2 =
(

g

4 cos θW

)2

[(1 − 4 sin2 θW)2 + 1], (2.2)

and g the SU(2) electroweak coupling constant. In the
present work, the only reference to this angle χ is through
sin 2χ. In the case of the eeZ coupling, we have sin 2χ '
0.1393, whereas for the eνW coupling, which is purely left-
handed, we have sin 2χ = 1. This overall constant is of the
order of g̃2 ∼ 4πα/3.

The momenta of the final-state leptons will be referred
to by polar angles θ1 and θ2 (see (1.1)), and that of the
Higgs particle by the polar angle θh:

ppp1 · ppp′
1 = |ppp1||ppp′

1| cos θ1 = EE′
1 cos θ1,

ppp1 · ppp′
2 = |ppp1||ppp′

2| cos θ2 = EE′
2 cos θ2,

ppp1 · ppph = |ppp1||ppph| cos θh = E
√
E2

h −m2
h cos θh. (2.3)

For forward production, we will thus have cos θ1 ' 1,
cos θ2 ' −1. Furthermore, an azimuthal angle φ will refer
to the relative orientation of the two planes formed by the
final and initial-state leptons (in [13] the definition used
was cosφ → − cosφ),

cosφ =
(ppp1 × ppp′

1) · (ppp1 × ppp′
2)

|ppp1 × ppp′
1||ppp1 × ppp′

2|
. (2.4)

The two beams will be taken to be longitudinally polar-
ized, with degrees of polarizations given by P1 and P2,
respectively (Pi > 0 for a right-handed polarization). We
shall express the cross sections in terms of the variables

s1 = (p1 + p2)2, s2 = (p′
1 + p′

2)
2,

t1 = (p1 − p′
1)

2, t2 = (p2 − p′
2)

2,

u1 = (p1 − p′
2)

2, u2 = (p2 − p′
1)

2, (2.5)

where (neglecting the electron mass)

m2
h = s1 + s2 + t1 + t2 + u1 + u2. (2.6)

For the two final-state electrons, we distinguish p′
1 and p′

2,
according to which has the higher energy, E′

1 > E′
2.

3 The e−e− → h e−e− cross section

For Higgs production from an electron–electron initial
state via the so-called fusion mechanism (with Z
exchange), there are two diagrams, because of the symme-
try of the two electrons in the final state. The correspond-
ing two amplitudes differ by the substitutions p′

1 ↔ p′
2,

corresponding to (t1, t2) ↔ (u1, u2), and by an overall
sign.

We present the differential cross section in two different
forms. Both are useful, according to which distribution we
want to study. For the study of distributions of the final-
state electrons, we express the differential cross section
as

d4σ(h)

dε d cos θ1 d cos θ2 dφ
= C(h){|F (t1, t2)|2X(h)

+ (tj ↔ uj) + 2Re[F ∗(u1, u2)F (t1, t2)]Z(h)},(3.1)

where F (t1, t2) is a propagator factor,

F (t1, t2) =
1

t1 −m2
Z

1
t2 −m2

Z

. (3.2)

The overall constant is given as2

C(h) =
1

(2π)4
GF√

2
g̃4

2s
m4

ZE
′
1E

′
2

|J |Eh

{
1 for h = H,

η2 for h = A,
(3.3)

2 The normalizations of C(h) and ε take into account the fact
that there are two identical particles in the final state. Since
the two electrons are distinguished by their energies, the polar
angles θ1 and θ2 may take on any values in the range [0, π].
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with the Jacobian

J = 1 +
2E − Eh

2Eh
(1 + p̂pp′

1 · p̂pp′
2), (3.4)

and ε half the energy difference between the two electrons,

ε = 1
2 (E′

1 − E′
2). (3.5)

Since the two final-state electrons are indistinguishable,
we shall identify the momenta such that E′

1 ≥ E′
2; thus,

ε ≥ 0. The maximum value is given by the beam energy
and the Higgs mass as

εmax =
1
2
E − m2

h

8E
. (3.6)

For the purpose of studying distributions in cos θh and Eh,
it is more convenient to express the cross section as3

d4σ(h)

dEh d cos θ1 d cos θh dφh
= C̃(h){|F (t1, t2)|2X(h)

+ (tj ↔ uj) + 2Re[F ∗(u1, u2)F (t1, t2)]Z(h)}, (3.7)

where the overall constant is given as

C̃(h) =
1

(2π)4
GF√

2
g̃4

2s
m4

ZE
′
1

√
E2

h −m2
h

|J̃ |E′
2

{
1 for h = H,

η2 for h = A,

(3.8)

and J̃ is the Jacobian,

J̃ = 1 +
1
E′

2

(
E′

1 + (p̂pp′
1 · p̂pph)

√
E2

h −m2
h

)
. (3.9)

The dynamics is given by X(h) and Z(h). Below, we
consider three cases: (1) The CP -even case, (2) the CP -
odd case, and (3) the case of CP violation.

3.1 The CP -even case

For the CP -even case, we find

X(H) = 2
[
(1 − P1 sin 2χ)(1 − P2 sin 2χ)(s1s2 + u1u2)

+ (sin 2χ− P1)(sin 2χ− P2)(s1s2 − u1u2)
]
,

Z(H) = 2
[
(1 − P1 sin 2χ)(1 − P2 sin 2χ)

+ (sin 2χ− P1)(sin 2χ− P2)
]
s1s2. (3.10)

3 When integrating over (3.7) to obtain less-differential cross
sections, one has to keep in mind that there are two identical
electrons in the final state, and integrate cos θ1 over only one
hemisphere.

3.2 The CP -odd case

For the CP -odd case, we find

X(A) = (1 − P1 sin 2χ)(1 − P2 sin 2χ)Y0

+(sin 2χ− P1)(sin 2χ− P2)Y2,

Z(A) =
[
(1 − P1 sin 2χ)(1 − P2 sin 2χ)

+(sin 2χ− P1)(sin 2χ− P2)
]
Y, (3.11)

with

Y0 =
1

2m4
Z

{
t1t2[(s1 + s2)2 + (u1 + u2)2]

− 2[(s1s2 − u1u2)2 + (t1t2)2]
}
,

Y2 =
1

2m4
Z

t1t2[(s1 − s2)2 − (u1 − u2)2], (3.12)

and

Y =
1

4m4
Z

[s1s2(s21 + s22) − (s1 + s2)2(t1t2 + u1u2)

+ 2(t1t2 − u1u2)2]. (3.13)

For comparison, we give in Appendix A the corre-
sponding results, including beam polarization effects, as
well as the t-channel contribution, for the more familiar
case of

e+(p1) + e−(p2) → e+(p′
1) + e−(p′

2) + h(ph). (3.14)

3.3 CP violation

To allow for the possibility of CP violation in the inter-
action between electroweak gauge bosons and the Higgs,
we introduce a mixing angle α as follows:

M = cosαMeven + sinαModd. (3.15)

Thus, for α = 0 or π/2, the Higgs has even or odd CP ,
respectively, whereas for sin 2α 6= 0, the production mech-
anism violates CP . This amounts to allowing for both
terms, and their interference. The suitably averaged
square of the amplitude will then take the form∑

spin

|M|2 = cos2 α
∑
spin

|Meven|2 + sin2 α
∑
spin

|Modd|2

+ sin 2αRe
∑
spin

M†
evenModd. (3.16)

In the notation of (3.1) and (3.7), we get

X(h) = cos2 αX(H) + sin2 αX(A) + sin 2α X̃,

Z(h) = cos2 αZ(H) + sin2 αZ(A), (3.17)

where the amount of CP violation is given by sin 2α, with

tanα = η, (3.18)
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as follows from an identification of (3.15) with (1.4). The
CP -even terms X(H) and Z(H) are given by (3.10), and
the CP -odd ones, X(A) and Z(A), by (3.11)–(3.13). There
is no CP -violating contribution to the interference be-
tween the t- and u-channel terms. For the t- and u-channel
CP -violating terms, which are proportional to

H ≡ 1
m2

Z

εµνρσp
µ
1p

ν
2p

′
1
ρp′

2
σ

= −2(E/mZ)2 p̂pp1 · (ppp′
1 × ppp′

2), (3.19)

we find

X̃t = 2{[(1 + P1P2)(1 + sin2 2χ) − 2(P1 + P2) sin 2χ]
×(s1 + s2) − (1 − P1P2)(1 − sin2 2χ)(u1 + u2)}H,

X̃u = −2{[(1 + P1P2)(1 + sin2 2χ) − 2(P1 + P2) sin 2χ]
×(s1 + s2) − (1 − P1P2)(1 − sin2 2χ)(t1 + t2)}H.

(3.20)

A quantitative study of this case of CP violation is
presented in Sect. 6.

4 Gross features of the cross section

The Z propagators will favor production at small mo-
mentum transfers, i.e., with the final-state electrons close
to the beam directions. This is indeed how the CP -even
Higgs particle is produced. However, a finite momentum
transfer is required to produce a CP -odd particle, as is
seen from the coupling (1.4) and also from the explicit ex-
pressions (3.11)–(3.13). This statement will be illustrated
quantitatively below.

4.1 Total cross section

For a collider at
√
s = 500 GeV, the cross section for pro-

ducing a Standard Model Higgs with a mass of 100 GeV
is 9 fb, and falls steeply with mass, as illustrated in Fig. 2
(denoted “even”). The corresponding Bjorken cross sec-
tion is around 60 fb [2]. We also compare with the cross
section for producing a CP -odd Higgs boson, taking the
coupling strength η such that the two cross sections coin-
cide at mh = 100 GeV4.

Since it may be difficult to observe electrons at small
angles, and in order to reduce certain backgrounds, we
also study the effect of a cut, with respect to the beam,
on the polar angles of the final-state electrons. Three sets
of curves are given in Fig. 2. The upper ones are for no
cut, whereas the lower ones correspond to cuts at 5◦ (as
suggested by Minkowski [6]) and at 15◦5. Similar results
are given by Hikasa [3] at higher energies6, and in [6].

4 Clearly, in this phenomenological coupling, (1.4), the
strength η might depend on the Higgs mass.

5 This more conservative cut was studied by Barger et al. [6]
6 Our cross section agrees with Fig. 6 of [3].

100 200 300 400
0
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10

Fig. 2. Cross sections for Higgs production in electron–
electron collisions at Ec.m. = 500 GeV, for a range of Higgs
masses. Standard Model (denoted “even”) and CP -odd results
are shown. For each case, the upper curve corresponds to no
cut, whereas the middle and lower ones are obtained with an-
gular cuts at 5◦ and 15◦, respectively. (In the odd case, the
curve for 5◦ cannot be distinguished from the one for no cut.)
The cross sections for the odd case are normalized such that
for no cuts, they coincide at mh = 100 GeV, yielding η = 0.884
(see (1.4))
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Fig. 3. Cross sections for Higgs production in electron–
electron collisions for a Higgs mass mh = 100 GeV, for a range
of energies, Ec.m.. Standard Model (denoted “even”) and CP -
odd results are shown. For each case, the upper curve corre-
sponds to no cut, whereas the lower ones are obtained with the
same angular cuts as those in Fig. 2. The cross sections for the
odd case are normalized as in Fig. 2

The energy dependence is illustrated in Fig. 3. As the
energy increases, the cross section grows. This is charac-
teristic of the t-channel fusion mechanism, and rather dif-
ferent from the case of the Bjorken mechanism. However,
an angular cut will temper this growth with energy; for the
CP -even case, the cross section may even decrease with
energy (see also [6]). Polarization-dependent total cross
sections will be discussed in Sect. 4.4.
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Fig. 4a,b. Higgs energy spectra for the case Ec.m. = 500 GeV,
and for Higgs masses mh = 120 GeV and 150 GeV. The solid
curves give the distributions in the absence of any cut. The
dashed and dotted curves show the corresponding distributions
when cuts at 5◦ and 10◦ are imposed on the electron momenta

4.2 Higgs energy distributions

It is interesting to consider the Higgs energy distribution

1
σ(h)

dσ(h)

dEh
=

1
σ(h)

∫ 1

0
d cos θ1

∫ 1

−1
d cos θh

∫ 2π

0
dφ

× d4σ(h)

dEh d cos θ1 d cos θh dφ
. (4.1)

We show such distributions in Fig. 4, for
√
s = 500 GeV,

and for two Higgs masses, mh = 120 GeV and 150 GeV.
In the CP -even case, the Higgs particle has rather low
energy, whereas in the CP -odd case, the spectrum is much
harder, as discussed previously.

When one imposes a cut on the opening angle of the
final-state electron momenta with respect to the beam, the
CP -even spectrum becomes harder, whereas the CP -odd
one is practically unchanged. Curves are shown (dashed
and dotted) in Fig. 4, corresponding to cuts at opening
angles of 5 and 10 degrees. (No cut is imposed on the
Higgs particle.) However, even with such a cut, there is a
clear distinction between the two cases. We shall return
to these distributions in Sect. 8.

0 0.5 1
0

0.5

1

a

0 0.5 1
0

0.5

1

b

Fig. 5a,b. Distributions in cos θh, for Ec.m. = 500 GeV and
two mass values: mh = 120 GeV and 250 GeV. Both the CP -
even and the CP -odd cases are considered, as indicated. Solid
curves correspond to no cuts, and dashed and dotted curves
correspond to cuts on the final-state electrons at 5◦ and 10◦,
respectively

4.3 Higgs polar-angle distributions

Next, we consider the Higgs polar-angle distribution

1
σ(h)

dσ(h)

d cos θh
=

1
σ(h)

∫ 1

0
d cos θ1

∫ 2π

0
dφ

×
∫ Eh max

mh

dEh
d4σ(h)

dEh d cos θ1 d cos θh dφ
. (4.2)

The range of integration over Eh is determined by mh ≤
Eh ≤ E +m2

h/(4E). In Fig. 5 we show such distributions
for

√
s = 500 GeV and for two values of the Higgs mass:

mh = 120 GeV and 250 GeV.
In the absence of any cut, there is a clear distinction

between the two cases of CP , the CP -even distribution
being much more peaked along the beam direction. When
cuts are imposed on the opening angles of the final-state
electrons, this difference is reduced, but not seriously. The
dashed and dotted curves in Fig. 5 show the effects of im-
posing a cut on the opening angle of the final-state elec-
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1

Fig. 6. The bi-polarization-dependence A1 (see (4.3)) as ob-
tained from the integrated cross sections for Higgs production
in electron–electron collisions at Ec.m. = 500 GeV, for a range
of Higgs masses. Standard Model (denoted “even”) and CP -
odd results are shown. For the even case, the lower curve cor-
responds to no cut; the upper curves are obtained with an
angular cut on the final-state electron momenta at 10◦. (For
the odd case, the two curves are indistinguishable)

trons, with respect to the beam, of 5 and 10 degrees, re-
spectively. The dependence of these distributions on the
Higgs mass, is very weak. Such polar-angle distributions
may therefore be valuable, in particular if one can get data
near the beam directions.

4.4 Polarization-dependent correlations

The dependence on longitudinal beam polarization is given
by

d4σ(h) = d4σ
(h)
0

[
1 +A

(h)
1 P1P2 +A

(h)
2 (P1 + P2)

]
(4.3)

where |A(h)
1 | ≤ 1, and |A(h)

2 | ≤ 1
2 (1+A(h)

1 ) [20]. The quan-
tities A(h)

1 and A
(h)
2 might be useful in distinguishing the

even and odd case, since the unknown coupling strength
η cancels out.

The quantity A1 is most easily extracted if both beams
have equal and opposite polarizations. A1 is shown in
Fig. 6 for the integrated cross section. There are very
strong differences between the two CP cases. For the CP -
odd case, the cross section is much reduced if the two
beams have large and opposite polarizations, whereas in
the even case, there is only a small reduction. The large
value of A1 in the CP -odd case implies that the cross sec-
tion is greatly reduced if both beams are longitudinally
polarized. This suppression is due to the fact that in the
CP -odd case, the two intermediate Zs must have orthog-
onal polarizations7. In the extraction of A1 from data,
there will be a contamination from the A2 term in (4.3)

7 We are grateful to P. Zerwas for this observation.

when P1 +P2 6= 0. For the parameters given in Fig. 6, A2
ranges from -16% to -18% and from -21% to -30% for the
CP -even and -odd cases, respectively.

5 Final-state electron–electron correlations

In the electron–electron mode, the angular distributions
are more complicated than in the positron–electron mode,
because the propagators depend on the angles of interest,
through tj and uj .

5.1 Azimuthal correlations

We first consider distributions in the azimuthal angle φ
defined in (2.4). These are obtained by integrating the
differential cross section (3.1) over the energy difference,
given by ε, up to εmax, as well as over the polar angles,
θj , for 0 ≤ | cos θj | ≤ cos θc:

2π
σ(h)[cos θc]

dσ(h)[cos θc]
dφ

=
2π

σ(h)[cos θc]

∫ εmax

0
dε

∫ cos θc

− cos θc

d cos θ1
∫ cos θc

− cos θc

d cos θ2

× d4σ(h)

dε d cos θ1 d cos θ2 dφ
, (5.1)

with

σ(h)[cos θc] =
∫ εmax

0
dε

∫ cos θc

− cos θc

d cos θ1
∫ cos θc

− cos θc

d cos θ2

×
∫ 2π

0
dφ

d4σ(h)

dε d cos θ1 d cos θ2 dφ
. (5.2)

In this case, there is no particular need to use the
events where the final-state electrons are close to the beam
direction, so we impose a stronger cut, cos θc = 0.9. (It
may even be difficult to determine the azimuthal angles
for electrons which are close to the beam direction.) Re-
sults are shown in Figs. 7 (mh = 120 GeV) and 8 (mh =
250 GeV), for the unpolarized case, and for two c.m. ener-
gies. The distributions generally favor the region around
φ ∼ π; i.e., the region where the two final-state electrons
have non-vanishing and opposite transverse momenta
(with respect to the beam), as opposed to φ ∼ 0, when
they are more parallel. This broad feature is purely kine-
matic; more energy is available to create a Higgs particle if
the two virtual Zs have opposite transverse momenta. In
addition to this broad feature, there is a dip around φ = π
in the CP -odd case, if the Higgs momentum is sufficiently
high (i.e., at low mass).

If the two beams have opposite polarizations, the dif-
ference between the two cases can be quite spectacular, as
is illustrated in Fig. 9 for CP = 1 and CP = −1.
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Fig. 7a,b. Azimuthal distributions at energies Ec.m. =
500 GeV and 800 GeV, and for a Higgs mass mh = 120 GeV,
with unpolarized beams. Solid curves are for CP = 1, dashed
ones are for CP = −1. The polar-angle cut-off is given by
cos θc = 0.9

5.2 Polar-angle correlations

Next we consider distributions in the polar angles of the
electrons:

1
σ(h)[cos θc]

d2σ(h)

d cos θ1d cos θ2
=

1
σ(h)[cos θc]

∫ εmax

0
dε

×
∫ 2π

0
dφ

d4σ(h)

dε d cos θ1 d cos θ2 dφ
. (5.3)

Such a distribution is shown in Fig. 10 for mh = 120.
There is a rather strong difference between the two CP
cases, the cross section being much more peaked for elec-
trons emitted close to the forward direction in the CP -
even case. To produce an odd parity state, angular mo-
mentum has to be transferred, and the electrons must
therefore undergo a more violent scattering. For a higher
Higgs mass, the effect is less pronounced.

0
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2

a

0

1

2

b

Fig. 8a,b. Same as Fig. 7 for mh = 250 GeV

A less-differential distribution can be obtained as fol-
lows. Let

cosΘ = 1
2 (cos θ1 − cos θ2), (5.4)

or

cos θ1 = cosΘ + 1
2w, cos θ2 = − cosΘ + 1

2w, (5.5)

and consider

1
σ(h)[cos θc]

dσ(h)

d cosΘ

=
1

σ(h)[cos θc]

∫ εmax

0
dε

∫ 2π

0
dφ

∫ wmax

−wmax

dw

× d4σ(h)

dε d cos θ1 d cos θ2 dφ
(5.6)

with

wmax =

{
2(cos θc + cosΘ) if cosΘ < 0,
2(cos θc − cosΘ) if cosΘ > 0.

(5.7)
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0
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Fig. 9. Azimuthal distributions at Ec.m. = 500 GeV, mh =
120 GeV, for P1 = 1 and P2 = −1. The polar-angle cut-off is
given by cos θc = 0.9
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Fig. 10a,b. Normalized distributions, in the polar angles of
the final-state electrons, | cos θ1,2| ≤ 0.9, for Ec.m. = 500 GeV,
mh = 120 GeV, and for unpolarized beams. Note different
scales

We show such distributions in Fig. 11, for the even and odd
cases. For CP = 1, the cross section is much more peaked
towards the forward direction, cosΘ = ±1, consistent with
Fig. 10.
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Fig. 11a,b. Distributions in cos Θ, for Ec.m. = 500 GeV, mh =
120 GeV, and a unpolarized beams, b P1 = 1, P2 = −1. Solid
and dashed lines: cut at 5◦; dotted lines: cut at 10◦

5.3 Energy correlations

Finally, we consider the distribution in relative electron–
energy difference. Introducing the scaled energy difference
as x = ε/εmax (see (3.5) and (3.6)), we will consider

1
σ(h)[cos θc]

dσ(h)[cos θc]
dx

. (5.8)

Such distributions are shown in Fig. 12. For the CP -
odd case, this distribution is “harder”; i.e., it falls off less
rapidly for large energy differences x.

In electron–positron annihilation, with Higgs produc-
tion via the Bjorken process, analogous distributions also
exhibit a considerable sensitivity to whether the Higgs
particle is even or odd under CP [11].
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Fig. 12. Distributions in relative final-state electron energy,
x = ε/εmax, for Ec.m. = 500 GeV, mh = 120 GeV, and unpo-
larized beams

0
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Fig. 13. Azimuthal distributions for Ec.m. = 500 GeV, mh =
120 GeV. Solid: CP = +1, dashed: CP = −1, dotted: CP
violated, with η = 0.5. Polar-angle cuts: | cos θc| ≤ 0.9

6 CP violation

As discussed in the introduction, there could also be CP
violation in the Higgs sector, in which case the Higgs par-
ticles would not be eigenstates of CP .

While the presence of both even (X(H) and Z(H)) and
odd (X(A) and Z(A)) terms in the cross section reflect par-
ity violation, only the terms X̃t and X̃u explicitly violate
parity. For these to be observed, one has to assign a value
to ppp′

1 × ppp′
2 (cf. (3.19)), i.e., one needs to distinguish the

final-state electrons.
We show in Fig. 13 azimuthal distributions of the kind

shown in Figs. 7 and 8, allowing for CP violation. Since
these involve a symmetrical integration over both hemi-
spheres, − cos θc ≤ cos θ1,2 ≤ cos θc, the parity-violating
terms X̃t and X̃u (cf. (3.20)) are cancelled. However, the
parity violation leads to a superposition of the two cases,
CP = +1 and CP = −1. Such distributions may suffice
to provide evidence of parity violation.

-1

0

1

Fig. 14. CP -violating asymmetry A of (6.1), for Ec.m. =
500 GeV, mh = 120 GeV, and η = 0.5. Polar-angle cuts:
| cos θc| ≤ 0.9

One way to access the parity-violating terms X̃t and
X̃u is to introduce the weight factor cos θ1 to distinguish
the two hemispheres. Thus, we consider (the two electrons
are here distinguished by E′

1 > E′
2) the asymmetry

A =
2π

σ(h)[cos θc]

∫ εmax

0
dε

∫ cos θc

− cos θc

d cos θ1

×
∫ cos θc

− cos θc

d cos θ2
d4σ(h) cos θ1

dε d cos θ1 d cos θ2 dφ
. (6.1)

This quantity is shown in Fig. 14 for the same parameters
and cuts as those used in Fig. 13. To lowest order, the
effect is linear in η. Thus, given enough data, the effect
can be sizable. Other ways to search for CP violation in
the ZZ–Higgs coupling are discussed in [10,11,14].

7 Charged Higgs production

If the produced Higgs is charged, there will be one or two
final-state neutrinos. These cannot be detected, so distri-
butions of the kind discussed in Sect. 5 are not available.
One may instead consider distributions of the charged
Higgs particles themselves.

7.1 Singly-charged Higgs production

Singly-charged (negative) Higgs particles, which are ex-
pected in certain models [15], can be produced in e−e− col-
lisions through the exchange of one Z and one W− boson.
The cross section would be given by formulas analogous to
those presented in Sect. 3, where the numerical coefficients
involving the polarizations Pi and the relative strength of
the axial coupling, sin 2χ, would be replaced as follows for
the t-channel terms (with accompanying changes in the
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propagator masses):

(1 − P1 sin 2χ)(1 − P2 sin 2χ) → (1 − P1 sin 2χ)(1 − P2),
(sin 2χ− P1)(sin 2χ− P2) → (sin 2χ− P1)(1 − P2),

(7.1)

and similarly for the u-channel terms, with P1 and P2
interchanged. The interference terms would have the co-
efficient substitution

(1 + P1P2)(1 + sin2 2χ) − 2(P1 + P2) sin 2χ
→ (1 − P1)(1 − P2)(1 + sin 2χ), (7.2)

where sin 2χ ' 0.1393 refers to the eeZ coupling.
These substitutions would change only quantitative as-

pects of the cross sections. Thus, we expect all qualitative
features discussed in Sect. 4 to remain valid.

7.2 Doubly-charged Higgs production

Doubly-charged Higgs particles, h−−, which are expected
in the left–right-symmetric [9] and other models [8], can be
produced in electron–electron collisions, not only in the s-
channel, but also viaWW exchange. This mechanism does
not require lepton-number violation, but the WWh−−
coupling is absent in certain models [5]. Apart from an
overall, model-dependent constant, the cross section would
be given by the formulas of Sect. 3, with sin 2χ = 1. Dis-
tributions of the kinds given in Figs. 4 and 6 would readily
reveal whether such a particle was even or odd under CP .

8 Statistical considerations

It is of interest to estimate how many events are needed
to determine the CP from distributions of the kinds pre-
sented here. One of the most promising ones appears to
be the Higgs energy distribution, shown in Fig. 4. We will
assume that CP is conserved, so that the problem can be
formulated in terms of statistical hypothesis testing as H0:
CP = 1 and H1: CP = −1. Information would be gained
if H0 were rejected.

We denote the CP = +1 distribution by f(x) and the
CP = −1 distribution by g(x). The problem is well suited
for the Neyman–Pearson test [21], and following this ap-
proach, we will reject H0 if, for n events, the likelihood
ratio

L(x1, x2, . . . , xn) =
g(x1)g(x2) · · · g(xn)
f(x1)f(x2) · · · f(xn)

≥ k, (8.1)

where xi denote observed values of Eh, and
k is a critical constant to be determined.
The constant k determines α, the level of “significance”
of the test, i.e., the probability that we reject a correct
hypothesis. An estimate for k can be obtained by Monte
Carlo simulations. By drawing s samples of n x-values
from the f(x) distribution, the ratios L1, L2, . . . Ls can be
calculated by applying (8.1). The empirical (1−α)×100%

Table 1. Recognition probabilities. Here, n is the number of
events, the level of significance of the test is α = 5%, and
1 − β [%] is the probability that one can recognize a CP = −1
distribution in Higgs energy data, for Ec.m. = 500 GeV and at
three Higgs masses, mh = 100, 120 and 150 GeV. See the text
for further details

100 GeV 120 GeV 150 GeV
n k 1-β k 1-β k 1-β

No cut 5 3.0 81 3.2 80 3.5 76
10 0.75 97 0.94 97 1.2 95

Cut at 10◦ 5 3.2 80 3.4 76 3.6 72
10 1.0 96 1.2 95 1.5 93

percentile in the simulated L distribution can be used as
an estimate of k.

The “power” of this test, 1 − β (the probability of
rejecting H0 when H0 is false), can also be estimated by
Monte Carlo simulations. Samples should then be drawn
from the g distribution, and the proportion of samples that
are rejected in the test estimates 1 − β. Results are given
in Table 1 for Ec.m. = 500 GeV and three values of the
Higgs mass, mh = 100, 120 and 150 GeV. For each mass
value, two cases are considered: (i) no cut on the final-
state electron momenta, (ii) the electron momenta have
to satisfy θ ≥ 10◦. (With a cut at 5◦, these probabilities
are practically the same as without any cut.) At a mass of
120 GeV, we see that 10 events suffice to reveal a CP =
−1 distribution, at the level of 95–97%, with a risk of
falsely rejecting the correct hypothesis, α, of only 5%. The
discrimination is easier if one can get data near the beam
direction, and if the Higgs particle is light, as is also seen
from Fig. 4.

9 Concluding remarks

We have studied the production of generic Higgs particles
in e−e− collisions, focusing on distributions which might
be useful in distinguishing a CP -even from a CP -odd par-
ticle. Longitudinal beam polarization effects are taken into
account. We have not discussed backgrounds. These would
depend on how the Higgs boson is detected. A light Higgs
would dominantly decay to b quarks, and the background
would not be severe, occurring mainly from single Z and
W production and the two-photon process [6]. A heavier
Higgs would decay to W and Z bosons, and the back-
ground would be a problem [3,22]. In the CP -even case,
the Higgs particle tends to be softer, and events are more
aligned with the beam direction than in the CP -odd case.
In fact, the Higgs energy distribution may be one of the
better observables for discriminating the two cases. Fur-
thermore, the dependence on the product of the two beam
polarizations is much larger in the CP -odd case. This de-
pendence, which is represented by an observable A1, be-
comes a better “discriminator” for increasing Higgs masses
when the Higgs momentum decreases, and other methods
may tend to become less efficient.
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If the two final-state electrons are observed, a certain
azimuthal distribution, as well as the electron polar-angle
distributions, will also be useful for discriminating the two
cases.

Finally, we suggest ways to search for possible parity-
violating effects in the ZZ–Higgs coupling.
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Appendix A. The e+e− cross section

For the positron–electron case, there is, in addition to the
familiar Bjorken diagram, also a t-channel diagram. The
cross section can be expressed as

d4σ(h)

dε d cos θ1 d cos θ2 dφ
= C(h){[F (t1, t2)]2X(h)

+ [F (s1, s2)]2 X̃(h) + 2Re[F ∗(s1, s2)F (t1, t2)]Z(h)},
(A.1)

with F (t1, t2) defined by (3.2). The amplitude for the t-
channel diagram is related to the corresponding one for the
electron–electron case by the spinor substitutions v̄(p1) →
ū(p′

1), and v(p′
1) → u(p1), which amount to (s1, s2) ↔

(−u2,−u1). Also, the convention for the positron polar-
ization is different, such that P1 → −P1.

Furthermore, the (s-channel) Bjorken diagram is re-
lated to the t-channel diagram in a way similar to what is
the case for the electron–electron diagrams. Thus, the un-
polarized cross section for the Bjorken diagram is related
to that of the t-channel diagram by (s1, s2) ↔ (−t1,−t2).
However, the positron polarization for the Bjorken dia-
gram would correspond to a final-state polarization in
the t-channel diagram (which we sum over). Thus, the
polarization-dependent parts of these cross sections are
not related in this simple way.

For the CP -even case, we find

X(H) = 2
[
(1 + P1 sin 2χ)(1 − P2 sin 2χ)(s1s2 + u1u2)

− (sin 2χ+ P1)(sin 2χ− P2)(s1s2 − u1u2)
]

= 2[(1 + P1P2)(1 − sin2 2χ)s1s2
+ (1 − P1P2)(1 + sin2 2χ)u1u2

+ 2(P1 − P2) sin 2χu1u2], (A.2)

X̃(H) = 2{(1 − P1P2)[t1t2 + u1u2 − sin2 2χ(t1t2 − u1u2)]
+ 2(P1 − P2) sin 2χu1u2}, (A.3)

Z(H) = 2[(1 − P1P2)(1 + sin2 2χ) + 2(P1 − P2) sin 2χ]
× u1u2. (A.4)

For the CP -odd case, we find

X(A) =
t1t2
2

[
(s1 + s2)2 + (u1 + u2)2

] − (s1s2 − u1u2)2

−(t1t2)2 − sin2 2χ
t1t2
2

[
(s1 − s2)2 − (u1 − u2)2

]
+(P1 − P2) sin 2χ

[
t1t2(u2

1 + u2
2) − (s1s2)2

− (t1t2)2 − (u1u2)2 + 2s1s2(t1t2 + u1u2)
]

+P1P2

{
t1t2
2

[(s1 − s2)2 − (u1 − u2)2]

+ sin2 2χ
(

− t1t2
2

[
(s1 + s2)2 + (u1 + u2)2

]
+(s1s2 − u1u2)2 + (t1t2)2

)}
, (A.5)

X̃(A) =
s1s2

2
[
(t1 + t2)2 + (u1 + u2)2

] − (t1t2 − u1u2)2

−(s1s2)2 − sin2 2χ
s1s2

2
[(t1 − t2)2 − (u1 − u2)2]

+(P1 − P2) sin 2χ
[
s1s2(u2

1 + u2
2) − (s1s2)2

−(t1t2)2 − (u1u2)2 + 2t1t2(s1s2 + u1u2)
]

+P1P2

{
−s1s2

2
[(t1 + t2)2 + (u1 + u2)2]

+(t1t2 − u1u2)2 + (s1s2)2

+ sin2 2χ
s1s2

2
[(t1 − t2)2 − (u1 − u2)2]

}
, (A.6)

Z(A) =
1
4
[
(1 − P1P2)(1 + sin2 2χ) + 2(P1 − P2) sin 2χ

]
×[

2(s1s2 − t1t2)2 + u1u2(u2
1 + u2

2)

− (s1s2 + t1t2)(u1 + u2)2
]
. (A.7)
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